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SUMMARY

A method for adaptive identification of reduced-order models for continuous

stable SISO and MIMO plants is presented. The method recursively finds a model

whose transfer function (matrix) matches that of the plant on a set of frequencies

chosen by the designer. The algorithm utilizes the Moving Discrete Fourier Transform

(MDFT) to continuously monitor the frequency-domain profile of the system input and

output signals. The MDFT is an efficient method of monitoring discrete points in the

frequency domain of an evolving function of time. The model parameters are estimated

from MDFT data using standard recursive parameter estimation techniques. The

algorithm has been shown in simulations to be quite robust to additive noise in the

inputs and outputs. A significant advantage of the method is that it enables a type of

on-line model validation. This is accomplished by simultaneously identifying a number

of models and comparing each with the plant in the frequency domain. Simulations of

the method applied to an 8th-order SISO plant and a 10-state 2-input 2-output plant

are presented. An example of on-line model validation applied to the SISO plant is also
presented.
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I. INTRODUCTION

This paper presents a new method of robust adaptive identification for stable

continuous SISO and MIMO systems via recursive rational interpolation. Interpolation,

unlike many identification schemes, is frequency-domain based. It attempts to find a

model, frequently a reduced-order model (ROM), whose frequency response (matrix)

matches that of the plant at certain frequencies. In this case, the model is said to

interpolate the plant data at these frequencies. The goal, of course, is to find a model

whose transfer matrix closely matches that of the plant at all frequencies.

The interpolation approach has been studied by several researchers (e.g. [1]-[4]).

The method presented in this paper is most similar to [4]. In that reference, the

problem is cast in the form of a system of simultaneous linear algebraic equations in

which the unknowns are the plant parameters. We improve upon the method of [4],

however, in that the present method is recursive and therefore much more robust to

noise.

The algorithm presented in this paper monitors a number of points in the

frequency profiles of the plant inputs and outputs via a recursive version of the Discrete

Fourier Transform, which in this paper we call the Moving Discrete Fourier Transform,

or MDFT. This transform has been discussed in [4] in conjunction with SISO model

reduction. The transform was also used in another application in [5], where it was

called a frequency sampling filter. The MDFT has the advantage that it is recursive

and therefore gives the evolving DFT at every time step. It has the further advantage

that it is not necessary to calculate the DFT at all N frequencies (for an N-point DFT),

as is necessary for standard DFTs and FFTs, but only at those frequencies desired,

which are usually far fewer than N in number. This makes the algorithm numerically

efficient.

The paper is organized as follows. Section 2 briefly discusses the MDFT

algorithm. Section 3 describes the SISO identification algorithm and gives a numerical

example in which a 2nd-order model is derived for an 8th-order plant. Section 4

describes a method of on-line model validation made possible by the algorithm and

gives a numerical example. Section 5 describes the MIMO extension of the algorithm

and gives a numerical example in which a 6-state model is derived for a 10-state, 2-

input, 2-output plant. This ROM is compared to several others for the same plant.

Conclusions are given in Section 6.
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2. THE MOVING DISCRETE FOURIER TRANSFORM (MDFT)

Let {xi} , i=O, 1, 2, ..., N-1 be a set of N consecutive samples of a continuous

signal x(t) sampled every At seconds. The well-known Discrete Fourier Transform

(DFT) of {xi} is the set of complex numbers {Xk} , k=0, 1, 2, ..., g-1 defined by ([6]):

N-1

Xk = _ xiW m, k=O, 1, 2, ..., N-1 (2.1)

where W = exp(-j27r/N). Since there are N points in the calculation, this is called an

N-point DFT. Under certain circumstances, the complex number Xk can be considered

as a frequency component of x(t) at the frequency fk = k/NAt Hz. We will call the

frequencies f k DFT frequencies.

To make the process recursive, assume that a new sample of x becomes available,

x g. Our objective is to calculate a new DFT of x based on the latest N samples of x.

That is, we will create a "moving" DFT by discarding the oldest sample, in this case x0,

and calculating the DFT of the new sequence {xi}, i= 1, 2, ..., N. In general, we will be

interested in calculating the DFT of the (n + 1)th sequence of x, i.e. {Xn_N+2, ..., Xn+l},

recursively in terms of the DFT of the nth sequence of x, i.e. {X,_N+l, ..., x,,}. If Xk {"}

is the kth frequency component of the DFT of the nth sequence of x, then it can be

shown (see [4]) that Xk {'+1} is expressed recursively in terms of Xk {"} as follows:

Xk {n+l } _. [Xk {n} -- Xn_N+ 1 "gVXn+l] W -k (2.2)

Equation (2.2) gives the algorithm for the 1-step-ahead MDFT. Note that the

algorithm is very efficient because it involves only the addition of a real number to

Xk {'_} and multiplication by a complex constant W -k. Referring to (2.2), note that

Xk {"+l} depends only on Xk {"} and not on any other fre_luency component. This

means that it is only necessary to calculate the MDFT at those frequencies which are

desired, not all N frequencies, as is necessary in standard FFTs. This can result in

significant savings in calculations since usually derivation of a reduced-order model (see

Section 3) requires the DFT at a relatively small number of frequencies, whereas N is

usually large.
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3. RECURSIVE SISO REDUCED-ORDER MODELING

Assume that a kth-order model for a given stable plant is desired.

model can be described by a kth-order differential equation of the form:

a(D)y(t) = _(D)u(t)

Then, the

(3.1)

where a(D) is a kth-order monic Hurwitz polynomial in the differential operator

D = d/dt, and fl(D) is a polynomial of order k-1 or less. That is,

k-1

a(D) = D k + _ aiD' (3.2)
i=0

k-I

fl(D) = _,D _ (3.3)
i--0

Equation (3.1) can be rewritten in the form:

Dky = -- ak_lDk-ly -- . . . -- troy +/3k_lDk-lu + . . . + flo u
(3.4)

which can be rewritten as

y(t):_,Tz(t) (3.5)

where

r(t) : Dky (3.6)

_,T= [___k_,,...,--SO, Z_-,,""", Z0] (3.7)

Z(t) = [Dk-'y, . . . , Y, Dk-lu, "'" , u]T (3.8)

We now discuss a way by which the signals u, y, and all necessary derivatives of u

and y in (3.5) may be parameterized using MDFT data. It is well-known that the DFT,

hence the MDFT, gives an ezact parameterization of a signal if the signal is sinusoidal

and its frequency is exactly equal to one of the DFT frequencies. Specifically, it can be

shown that, if n is an integer between 0 and N/2,
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DFT[Asin( 2_n t (3.9)

at the frequency w, = 27rn/NAt radians/sec, and is zero at all other frequencies. In

(3.9), A, 0, M, ¢, N, and At are constants, with N and At defined as in Section 2.

That is, for the sinusoidal signal defined in (3.9), the magnitude of the time-domain

signal is given exactly by 2/N times the magnitude of the DFT, and the phase angle of

the time-domain signal is given exactly by _/2 plus the angle of the DFT. Therefore, if

the plant inputs are bandlimited and contain sinusoidal components at only the DFT

frequencies, u(t) and y(t) can be exactly parameterized in terms of MDFT data.

For the ideal case assume u(t) is of the form

N/2

u(t) = _=lU, sin(w,t +a,) (3.10)

where w, = 27rn/NAt and U,, c_,, are constants. As stated in Section 2, the frequencies

w, are the DFT frequencies. Note that, if N is large, u(t) can consist of a large number

of sinusoidal components. Assuming steady-state has been reached, the plant output

corresponding to (3.10) is

N/2

y(t): .__l Y. sin (w.t +/3.) (3.11)

where Y,,/3, are constants.

Choose any desired set of k distinct DFT frequencies {w/a , w12 , "", Wlk}" We call

these the identification frequencies. Taking MDFTs of u(t) and y(t) at the

identification frequencies and utilizing the appropriate magnitude and phase

information can be shown to yield the following parameterizations for u, y, Du, and Dy
[4]:

u - U1asin(oql ) + U12sin(c_12)+ . . . + Ulksin(crlk) (3.12)

y - Y,,sin(/31,)+Y,2sin(/312) + ... + y,ksin(/3ik) (3.13)

Du - WllUllCOS(Oqx)+Wl2Ui2cos(oq2)+... +WlkUikcos(oqk ) (3.14)

Dy - wllrllcos(/311)+Wl2Vl2COS(/312)+... +wlky1kcos(/3_) (3.15)
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whereUIj, alj are the magnitude and phase of the sinusoidal component in u(t) at

identification frequency Wlj, and Yzj, _zj are the magnitude and phase of the sinusoidal

component in y(t) at identification frequency wlj. These magnitudes and phases are

derived from the MDFT as explained above. All higher derivatives of u(t) and y(t) may

be parameterized in a like manner (see [4]). In this way, all entries in the vectors Y(t)

and Z(t) in (3.5) can be parameterized with constants at every time step via the MDFT.

Therefore, the parameters _b can be estimated from (3.5) using standard parameter

estimation techniques.

Incidentally, note that, although parameterizations for derivatives of u and y are

obtained, no derivatives of the signals are actually taken. Noise in the signals introduces

errors in Y(t) and Z(t), but at worst the errors remain in the same proportion to the

signal magnitude with higher derivatives and do not increase in size relative to signal

magnitude, as they would if noisy signals were differentiated.

Example

Consider the following 8th-order plant [4]:

6+8+5 8- +8
(3.16)

The plant input u(t) is chosen to be a 0.01 Hz, 4- 10 V square wave with an

additive noise component which is uniformly distributed between + 10 V. For the

MDFT, we choose N = 5000 and At = 0.02. The identification frequencies are then

chosen to be 0.01 Hz, 0.03 Hz, and 0.11 Hz, which correspond to DFT frequencies

and axe present in u(t).

Figure 1 shows parameter estimates for a 2nd-order model found using the

recursive rational interpolation method described above and applying the recursive

least squares algorithm to find the parameters from (3.5). The model has the form

clS + Co
Ga(s ) = s 2 + als + ao

(3.17)

where, from Figure 1, c 1 =15.021, c0=4.798, al =5.958, a0=4.795.

A comparison of Gp(s) and Gn(s) is shown in Figure 2. There is good

agreement at all frequencies. It should be noted that u(t) is not bandlimited, as

specified in (3.I0) for ideal inputs, and the noise level in u(t) is comparable to the
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magnitude of u(t) itself. This indicates that the algorithm is robust to nonideal
conditions.

4. ON-LINE MODEL VALIDATION

It is generally not automatically known whether or not an identified model is

good, in the sense that its frequency response closely matches that of the plant over a

range of frequencies. This usually necessitates a model validation stage following the

identification of a candidate model by any method.

It has been found in practice that the identification frequencies for interpolation-

based schemes must be chosen with care in order for the algorithm to find a good

model. Obviously, choosing correct identification frequencies is difficult if the plant is

unknown. This indicates the need for some type of model validation before a model

identified by this method can be used with confidence.

The identification algorithm presented in the previous section has the built-in

capability for on-line model validation due to the fact that frequency-domain plant data

are available via the MDFT. Thus, the algorithm may be given a measure of

"intelligence" by increasing the number of identification frequencies and simultaneously

deriving several models using different combinations of identification frequencies. The

frequency response of each model can then be compared with the plant at all

identification frequencies. The model with the least overall fit error can be taken as the

best model for the plant of those derived.

Example

Let us consider this strategy applied to the example of Section 3, i.e., we

attempt to find a 2nd-order model for the 8th-order plant (3.16). Since we are

unsure which identification frequencies to use for the identification, we specify a set

of frequencies which span the system passband, e.g., choose [o.,11, wz2 , wla, wt4, wIs,

w16]=2_[0.001, 0.01, 0.1, 1.0, 10.0, 100.0]. Of course, this necessitates an input

which is different from the square wave used in the previous example. It can be,

for instance, a sum of six sinusoids for this example. A model is derived using each

distinct pair of frequencies, i.e., we derive a model using (wll , w12 ) as the

identification frequencies, another model using (w11 , 0.,ta), etc. In all, 15 different

models can be derived taking the above identification frequencies two at a time. It
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is important to remember that the 15 models are derived simultaneously.

If we take as an error measurement the distance between the plant and

model responses in magnitude and phase summed over all identification

frequencies, we get a figure of merit for each model. Note that these distances are

easily calculated because plant magnitude and phase data at the identification

frequencies are available via the MDFT. To illustrate, let us take the following as

the fit error:

Error = _{1201og10(mag(Gp(j03")))- 201°gl°(mag(Gn(Jo31')))[
i=l

+ [arg(Gp(j031i)) - arg(Gn(j03_i))l}
(4.1)

where [ • ] stands for absolute value, mag stands for magnitude, and arg stands for

argument in degrees. Of course, this definition of fit error is completely arbitrary.

Whatever the error criterion, however, it must give a single number which

quantifies the fit error between the plant and model and be capable of being quickly

calculated.

The model which yields the lowest error can be taken as the best model of

those derived. For the present example, we get the following errors corresponding

to the above-defined identification frequencies and error criterion:

I.D____._ Erro__.__xr I.D.___._ Erro___.__gr I.D.___._ Error

(0311, 0312) 15.585 (0312, 0313) 14.394 (0313, ";I5) 10.164

(0311, 0313) 14.405 (w12 , _zi4 ) 3.6617 (0313, 0316) 10.242

(0311, 0314) 3.6938 (0312, 03_5) 4.2390 (0314, 0315) 81.438

(03n, 031s) 4.2825 (0312, 0316) 4.2805 (0314, 0316) 81.370

(0311, 0316) 4.3242 (0313, 0314) 7.5107 (0315, 0316) 78.089

Obviously, the model derived using the frequency pair (0312, 0314), or ROM #7,

yields the lowest error and therefore the best fit. This model is given by (3.17)

with c 1= 17.392, Co= 5.315, al = 7.334, ao = 5.320. A comparison of this model with

the plant is given in Figure 3. Notice that this model is better than the one

derived in Section 3, since we have "optinlized" the identification frequencies via

on-line model validation.
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If no model canbe found whosefit error is sufficiently small, the model order can

be easily increased. This amountsto changingthe number of entries in Z(t) and

correspondingly in _/_. Note that this can be done without changin 9 the inputs or the

identification frequencies. The order of the calculation (3.5) is simply incremented in
the algorithm in real time.

Finally, since the input and output MDFTs are monitored in this method, it is

possible to make decisions on how fast to update the model parameters or whether to

update them at all. If the MDFTs are not changing and a suitable model has been

determined, the parameter estimation part of the algorithm can be shut off. In this

case, only the MDFTs would proceed as the plant signals evolve. Thus, the monitoring

of the plant continues, but the parameter estimation part of the algorithm rests if there

is no need for a parameter update.

5. AN EXTENSION TO MIMO SYSTEMS

The above scheme for SISO identification via recursive rational interpolation can

be extended to MIMO plants as follows. Assume the plant has input vector u(t)=[ul,

u2, ..., Uq]w and output vector y(t)=[yl, Y2, ..., yp]T. The MIMO identification process

finds constant matrices Pi "" (P x p) and Qi ,-_ (p x q), i= O, 1, ..., m-1 such that the

model transfer matrix given by

where

r(s) = P-'(s)Q(s) (5.a)

rn-1

P(D) = DmI 4- __, PiD'
i=O

rn-I

Q(D) = __, QiD'
i=O

matches the plant transfer matrix on a given set of frequencies.

The model can be described by the matrix differential equation

(5.2)

(5.3)

P(D)y(t) = Q(D)u(t)

which can be rewritten in the form:

(5.4)
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P D "*-1" PoY + Q_.-1Dm-lu + • • + Q°u
Dmy=- ,,-1 Y-'"-

(5.5)

This can be put in a form analogous to (3.5):

v(t)= Tz(t) (5.6)

where now

Y(t) = Dmy

_T = [_ Pro-I,''',- Po, Qm-1, . . . , Q0]

(5.7)

(5.s)

and

Z(t) = [Dm-lYT, ... , yT, Dm-luT, . . . , uT]T (5.9)

Note that Y(t) _, p x 1, _T ,., p X m(p+q), and Z(t) .._ m(p+q) x 1.

Again, choose any set of k distinct DFT frequencies {Wll, wI2, ..., Wlk}" Denote

the set of identification frequencies as S = {wi1, wt2, ..., wtk}" Choose integers li > O,

i=1, ..., q such that

q (5.1o)
_li = k
i=1

Let Si, i= 1, 2, ..., q be subsets of S such that Si contains li elements and Sif'lSj=O,

i _ j. Now the input ui(t) is specified as containing frequency components at the

frequencies contained in S_. The input ui may contain any other frequency components

also, with the exception that the frequency components of Si must be unique to ui.

Again, MDFTs are taken of u(t) and y(t) at the appropriate identification

frequencies. Note that, in the MIMO case, MDFTs are taken of the input ui(t) at only

the identification frequencies contained is Si, but the MDFTs of the output yi(t) must

be taken at all identification frequencies.

As in the SISO case, the quantities in Y(t) and Z(t) in (5.6) are parameterized

from MDFT data at each time instant. Therefore, standard parameter estimation

techniques may be employed to solve for the parameter matrix • in (5.6). The

minimum number of identification frequencies necessary for unique identification and
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the minimum number of identification frequencies per input are topics of current

research.

Ezample

As a numerical example, the 10-state, 2-input, 2-output plant TGEN given

in [7] is considered. This is a linearized model of a large turbo-generator. The

original nonlinear model is given in [8]. The A, B, and C matrices for the state-

space representation of the linearized model are given in [9]. The corresponding

plant transfer matrix is given by

(5.11)

Gp(s) is given in the Appendix.

A 6-state model with observability indices equal to 3 is chosen for this

system. Thus, for this example, p=2, q=2, m=3, and k is chosen as 6. The

identification frequencies are chosen as [Wll , a;t2 , wi3 , w14 , wi5 , Wl6]=2rr[0.01, 0.1,

0.2, 0.5, 1.0, 2.0]. The plant inputs are specified as:

ul(t ) = y_sinwjit
i=1

(5.12a)

6

u2(t) = y_sinw,,t (5.12b)
i=4

The model transfcr matrix identified for this system using rational

interpolation, GR(s), is given in the Appendix. Also considered for comparison are

a 6-state model for this plant given in [9] (denoted as GM), and a 6-state model

derived from a balanced realization of the plant (denoted as GB). These models

are also given in the Appendix. Figures 4 - 7 show comparisons of the magnitude

and phase characteristics of Gp with those of GR, GM, and G B.

To get a numerical measure of the closeness of the models to the plant, the

plant magnitude and phase responses are compared with those of the various

models at 100 frequencies logarithmically spaced between 10 -3 and 101 cycles/sec.

That is, the following fit error is calculated:
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2
Ex = _ Y_ 1201°glo(mag(Gp'j (jw")))-2Ol°gl°(mag(Gxij(jw"))) l

j=l n=l

+ ]arg(Gpij(Jw.)) - arg(Gxij(jw.))l} (5.13)

where X = R, M, and B, and w, = 27r × 10 -3+4("-1)/°°. This measure is, of

course, completely arbitrary. However, it is one that is easily and accurately

calculated and measures ROM fit in the frequency range 10 -3 - 101 cycles/sec,

which is the critical range for this plant. Note that this calculation has nothing to

do with on-line model validation (Section 4), but is being done simply to compare

the goodness of the various ROMs. The resulting fit errors are calculated to be

ER = 3.0157 × 103, EM = 2.4135 x 104, and Es = 9.4244 × 103. Although GR has

the lowest error, it should be kept in mind that GR is designed specifically to

match the plant in the frequency range 10 -3 - 101 cycles/sec.

6. CONCLUSIONS

A method of adaptively identifying reduced-order models for SISO and MIMO

plants has been presented. The method is based on matching the plant and model

transfer matrices at a number of frequencies chosen by the designer. The method

recursively monitors frequency components in the plant inputs and outputs via the

Moving Discrete Fourier Transform (MDFT). This is a computationally efficient

method of recursively calculating the DFT of an evolving function of time. The

identification algorithm has the capability for on-line model validation.

There is no necessity in this method for the plant input and output signals to be

purely sinusoidal because the MDFT filters out sinusoidal components in these signals.

As always, better results are obtained if the system, whatever its order, has a good

reduced-order model. Computer simulations indicate that the algorithm is robust to

additive input and output noise and non-bandlimited inputs.

Areas of current research include error analysis of the algorithm for nonideal

inputs and stochastic disturbances, and determination of meaningful on-line figures of

merit for identified models.
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APPENDIX

The plant transfermatrix is given by (5.11)with

bTs7 + b6s 6 + . . . + bo

Gpl (S) = Ae

with b7 =-4.6075 × 101, b6=-4.5705 × 103, b5 =-4.7153 × 106, b4 =-1"8619 × 10s'

b3 =_2.4976 × 109, b2=-1.2507 × 10 l°, bl =-1.5146 × 101°, bo =-3.9506 x 109,

Gp12(s ) b6s6+bssS+'"+b°

with b6=-2.0048 × 104, bs =-1.7916 x 106, b4 =-2.3909 x 109, ba=-1.1727 × 1011,

b2 = -1.2373 × 1012, bx = -2.8374 × 1012, bo = -1.8166 × 1012,

b7sT+b6s6+...+bo
Gp2 (s) = be

with bT=-1.1590 × 10 °, b6 = -6.9327 × 101, bs = 5.6807 × 10s, b4 = 2"3299 x 107,

b3=2.9400 × 10 s, b2=1.3118 × 109 ' b1=1.4696 × 109 ' bo=1.3869 × 109 , and

Gp22(s ) bssS+bTJ+'"+b°

with bs=8.1715 × 102, b7 =6.5386 × 104, b6=7"9770 × 107' b5=3"9454 × 109'

b4 =4.6442 × 101o, b3 = 2.8534 × 1011, b2 = 1.8656 × 1012, bl =3.7379 × 1012,

bo = 2.0592 x 1012.

In the above, A e = s 1° + ags 9 +..- + ao with a 9 = 1.0098 × 102, as = 1.0256 × l0 s,

a 7 = 4.2252 × 106, a6 = 6.5835 × 107, as = 5.4549 × l0 s, a4 = 3.2781 × 109, aa = 1.4535 × 101°,

a_=2.7412 × 10 l°, %=1.8901 × 101° , ao=3.1027 × 109.

The ROM transfer matrix GR(s) is given by

Gml(s) = bs ss+b4s 4+...+bo
AR

with bs =-7.7158 x 10 -3, b4= 7.6781 × 10 -2, b3=-4"6515 × 101, b2 =-4"3011 × 102'

b1 =-5.8884 × 102, bo=-1.5861 × 102,

GRI2(S ) bssS+b4s4+'"+b°
= AR
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with bs = 3.9934 x 10 °, b4 =-2.6408 x 10 °, b3= 1.1580 x 103, b2=-3.6478 x 104,

bl = -9.6222 x 104, bo = -6.4423 x 104,

Gn21(s ) = bssS+b4s4+...+bo
An

with bs =-5.9553 x 10 -3, b4 = 3.2304 x 10 -2, b3 = 6.0336 x 10 °, b2 =4.6175 x 101,

bl=5.2247x 10', bo=5.5681 x 101, and

Gm2(s ) = bsss + b4s4 +... -{-bo
An

with bs=-1.6462 x 101 , b4=1.1952× 103 ' b3=3.1988 x 103 , b2=5.7420x 104 ,

b1 = 1.3469 × 105, bo = 7.4649 x 104.

In the above, An=s6+asSS+... +% with as=l.ll05 x 10', a4=7.2366 x 101,

a3=4.5892 x 102 , a 2=1.0098 x 103, a 1=7.4376 x 102 , %= 1.2457x 102 .

The ROM transfer matrix GM(S ) is given by

GMll(S ) = b5s5 -}-b4s4 -J-. • • J- bo
A M

with b5 =4.8290 × 10 -2, b4 : 1.8757 × 10 °, b3 = 1.9494 × 10°, b2 = -1.2283 × 103,

bl =-5.7616 x 103, bo =-2.3848 × 103,

GM12(S ) = b5sS-}-b4 s4+.., nub 0
A M

with b5 =2.9153 × 10 -2, b4 = 1.2889 × 10 o, b3 =_3.0414 x 10 -1, b2 =-2.3880 × 104,

bl = -8.2902 × 10 s, bo =-9.5445 x 105,

GM21(S ) = bss5 + b4,_q 4 -J- . . . -_- b 0

A M

with bs =-4.9194 × 10 -1, b4 =9.4826 × 10°, b3=-4.9046 x 101, b 2 =5.5164 x 102,

bl =-9.3964 x 102, bo= 9.0758 × 102, and

GM22(8 ) : bs "_s+ b4 84 -J- . . . Jr- b 0

A M

with bs =-6.7159 x 10 -1, b4 = 8.0447 x 102, b3 = 2.7814 x 104, b_ = 8.0852 x 104,

b, = 1.2135 x 10 °, bo = 1.0820 x 106.
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In the above, AM:S6+as sS-]-... +ao with a5=2.8238 × 101, a4 =2"5831 × 102'

a 3 = 1.4679 x 103, a2 = 8.2145 × 103, al = 8.8012 × 103, ao = 1.6306 × 103.

The ROM transfer matrix GB(S) is given by

Gsll(s ) b6s6+bSsS+'''+b°
= AB

with b6=-1.9102 x 10 -2, b5 =-6.0759 × 10-1, b4 =-1"4699 × 101' b3 =-4"5056 x 101,

b2 =-1.4480 x 103, bl =-3.5314 × 103, bo =-1.1386 × 103,

Gs12(s ) b6s6 + bss _ +... + bo
-- AB

with b6 = -1.8202 x 10 -2, b5 = -4.3626 x 10 -3, b4 = -5.6174 x 10°, b3 = 3.0908 x 102,

b_= -3.1770 × 104, bl =-4.7812 × 105, bo= -5.2357 × 105,

b6s6+bssS+...+bo
Gs21(s) = As

with b6 = 1.5093 x 10 -1, b5 =-2.9259 x 10°, b 4 : 1.6680 X 101 , b3 =-1.1690 × 102,

b2=6.2777 x 102 , b1=1.0947 x 102 , bo=3.9972 x 102, and

b6s6+bssS+...+bo
Gs22(s) = As

with b6 = 1.6164 × 10 -1 , b5 =-9.4448 × 10 °, b4 = 1.0597 × 103, b3 = 1.5933 × 104,

b2= 7.2009 × 104, bl =6.9226 × 105, bo = 5.9350 × 105"

In the above, As = s6 + a_s 5 +... + ao with a5 = 2.0310 × 101, a4 = 1.6829 x 102,

a3= 9.9166 × 102, a2 = 4.7178 × 103, al = 4.8675 × 103, ao = 8.9425 × 102.
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Figure 1 - Parameter estimates via recursive interpo-
lation, ID frequencies = 0.01 Hz, 0.03 Hz, and 0.11 Hz.
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Figure 2 - Comparison of 8th-order plant (GP) with

2nd-order model(GR) derived via recursive interpo-
lation, ID frequencies = 0.01 Hz, 0.03 Hz, and 0.11 Hz
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Figure 3 - Comparison of 8th-order .plant (GP) with
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